平面几何入门与广义相对论浅说


关于平面几何入门与广义相对论浅说最佳答案


平面几何入门与广义相对论浅说


1.培养平面几何的学习和理性思维? 一种是熟悉公式定理,根据问题背诵公式,根据问题要求,对公式的标题要求,这很容易找到突破; 看问题,最好先对示例做任何事情,很容易发现自己的软肋和误解; 第三,培养逆向思维的能力,您可以假设一个合理的结果,然后从结果中得出,您可以找到已删除的链接,然后根据这些链接的含义证明需要达到的要求。


关于平面几何入门与广义相对论浅说相关答案


2.欧几里德的《几何原本》,一开始欧几里德就劈头盖脸地给出了23个定义,5个公设,5个公理。其实他说的公社就是我们后来所说的公理,他的公理是一些计算和证明用到的方法(如公理1:等于同一个量的量相等,公理5:整体大于局部等)他给出的5个公设倒是和几何学非常紧密的,也就是后来我们教科书中的公理。分别是: 公设1:任意一点到另外任意一点可以画直线 公设2:一条有限线段可以继续延长 公设3:以任意点为心及任意的距离可以画圆 公设4:凡直角都彼此相等 公设5:同平面内一条直线和另外两条直线相交,若在某一侧的两个内角和小于二直角的和,则这二直线经无限延长后在这一侧相交。 在这五个公设理里,欧几里德并没有幼稚地假定定义的存在和彼此相容。亚里士多德就指出,头三个公设说的是可以构造线和圆,所以他是对两件东西顿在性的声明。事实上欧几里德用这种构造法证明很多命题。第五个公设非常罗嗦,没有前四个简洁好懂。声明的也不是存在的东西,而是欧几里德自己想的东西。这就足以说明他的天才。从欧几里德提出这个公理到1800年这大约2100年的时间里虽然人们没有怀疑整个体系的正确性,但是对这个第五公设却一直耿耿于怀。很多数学家想把这个公设从这个体系中去掉,但是几经努力而无果,无法从其他公设中推到处第五公设。 同时数学家们也注意到了这个公设既是对平行概念的论述(故称之为平行公理)也是对三角形内角和的论述(即内角和公理)。高斯对这一点是非常明白的,他认为欧几里德几何式物质空间的几何,1799年他说给他的朋友的一封信中表现了他相信平行公里不能从其他的公设中推导出来,他开始认真从事开发一个新的能够应用的几何。1813年,发展了他几何,最初称为反欧氏几何,后称星空几何,最后称非欧几何。在他的几何中三角形内角可以大于180度。当然得到这样的几何不是高斯一人,历史上有三个人。一个是他的搭档,另一个是高斯的朋友的儿子独立发现的。其中一个有趣的问题是,非欧氏几何中过直线外一点的平行线可以无穷。 不久之后,俄国的一位著名数学家也发现了一个新的非欧几何,即罗氏几何。他的三角形内角和是小于180度的。 而19世纪初非欧式几何的发现,正是后来爱因斯坦发现广义相对论的基础。


了解更多平面几何入门与广义相对论浅说类似问题


平面设计自学教程入门书籍
万老师cad室内平面图入门教学
平面设计初学者入门视频教程
室内平面设计基础知识入门
平面设计技术入门教程
平面设计教学入门视频
如何自学平面设计入门书籍推荐